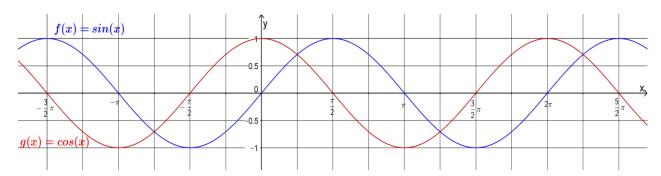

Basiswissen für die Oberstufe: Trigonometrische Funktionen

1. Sinus, Kosinus und Tangens im rechtwinkligen Dreieck

$$sin(\alpha) = \frac{Gegenkathete}{Hypotenuse} = \frac{a}{c}; \ cos(\alpha) = \frac{Ankathete}{Hypotenuse} = \frac{b}{c}; \ tan(\alpha) = \frac{Gegenkathete}{Ankathete} = \frac{a}{b}$$


2. Sinus und Kosinus am Einheitskreis

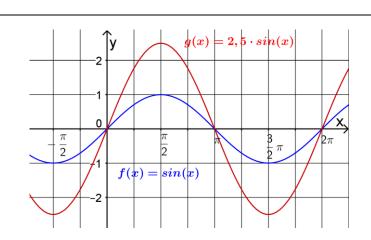
 α ist ein beliebiger Winkel und x das zugehörige Bogenmaß im Einheitskreis.

$$y_P = sin(\alpha) = sin(x)$$
; $x_P = cos(\alpha) = cos(x)$

3. Graphen der Sinus- und Kosinusfunktion

4. Eigenschaften der Sinus- und Kosinusfunktion

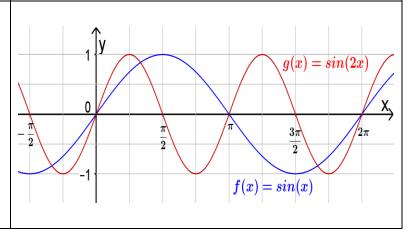
Die Funktionen f und g mit $f(x) = sin(x), x \in \mathbb{R}$, und $g(x) = cos(x), x \in \mathbb{R}$, haben folgende Eigenschaften:

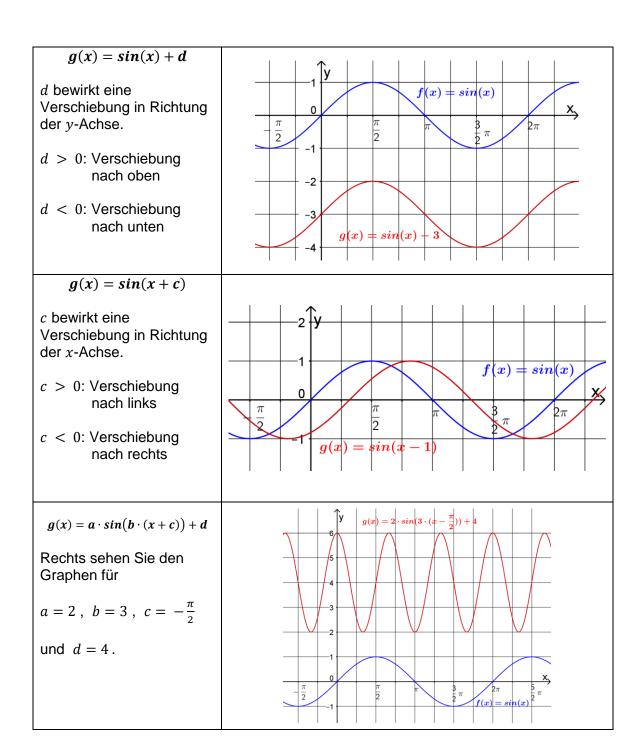

- f und g sind periodische Funktionen mit der Periode (Periodenlänge) 2π .
- Für alle $x \in \mathbb{R}$ gilt $-1 \le f(x) \le 1$ und $-1 \le g(x) \le 1$.
- Der Graph von f ist punktsymmetrisch zum Ursprung und der Graph von g ist symmetrisch zur y-Achse.
- Nullstellen von f: ..., -3π , -2π , $-\pi$, 0, π , 2π , 3π , ...

Nullstellen von g: ..., $-\frac{5}{2}\pi$, $-\frac{3}{2}\pi$, $-\frac{1}{2}\pi$, $\frac{1}{2}\pi$, $\frac{3}{2}\pi$, $\frac{5}{2}\pi$, ...

5. Parametervariationen am Beispiel der Sinusfunktion

 $g(x) = a \cdot sin(x), a > 0$


a bewirkt eine Streckung oder Stauchung in Richtung der y-Achse. a heißt Amplitude der Funktion g.



$$g(x) = sin(b \cdot x), b > 0$$

b bewirkt eine Streckung oder Stauchung in Richtung der *x*-Achse und verändert die Frequenz und die Periode *P*.

Periode von $g: P = \frac{2\pi}{b}$

6. Ableitungen der Sinus- und Kosinusfunktion

Funktionsgleichung	Gleichung der Ableitungsfunktion
$f(x) = \sin(x), x \in \mathbb{R}$	$f'(x) = cos(x), x \in \mathbb{R}$
$g(x) = cos(x), x \in \mathbb{R}$	$g'(x) = -\sin(x), x \in \mathbb{R}$

Eine anwendungsbezogene Aufgabe finden Sie in der Datei **Riesenräder.pdf** . Weitere Aufgaben zu den trigonometrischen Funktionen finden Sie in der Datei **Aufgaben-Sinus-Kosinus.pdf**.